Page 37 - Chip Scale Review_November December_2021-digital
P. 37

graphene, and synthesized in a CMOS-    “ M o d e l i n g ,  a n a ly si s ,  a n d   robustness of graphene,” IEEE
        compatible manner, can not only help    design of graphene nano-ribbon     Trans. on Electron Devices, vol. 61,
        overcome such major bottlenecks in      interconnects,” IEEE Trans. on     no. 6, pp. 1920-1928, 2014.
        CMOS technologies, but also bring       Electron Devices, vol. 56, no. 8,   15.  R. Chau, “Process and packaging
        unprecedented energy-efficiency and     pp. 1567-1578, 2009.               in novations for Moore’s law
        performance gain in next-generation IC   7.  J. Jiang, J. Kang, W. Cao, X.   continuation and beyond,” IEEE
        products. Thereby, these inventions have   Xie, H. Zhang, J. H. Chu, et al.,   Inter. Electron Devices Meeting,
        established a revolutionary new BEOL    “Intercalation doped multilayer-   pp. 1.1.1-1.1.6, 2019.
        technology platform for future ICs and   graphene-nanoribbons for next-  16.  E. Siegel, “The last barrier to
        paved the way for graphene’s entry into   generation interconnects,” Nano   ultra-miniaturized electronics
        mainstream electronics.                 Letters, vol. 17, no. 3, pp. 1482-  is broken, thanks to a new type
                                                1488, 2017.                        of inductor,” 2018. [Online].
        Acknowledgement                      8.  J. Jiang, J. H. Chu, K. Banerjee,   Available: https://www.forbes.com/
          T h e  r e s e a r c h  s u m m a r i z e d i n   “C MO S - c o m p a t ible   d o p e d -  sites/startswithabang/2018/03/08/
        this ar ticle was conducted in the      multilayer-graphene interconnects   breakthrough-in-miniaturized-
        Nanoelectronics Research Lab at UC      for next-generation VLSI,” IEEE    i nd uc t or s -t o -r evolut ion i z e -
        Santa Barbara and was supported over    Inter. Electron Devices Meeting, pp.   electronics/?sh=84ecbd4779ec
        the years by the DoD (AFOSR and         34.5.1-34.5.4, 2018.            17.  K. Agashiwala, A. Pal, W. Cao, J.
        ARO), DoE, NIST, NSF, and SRC.       9.  J. Kang, Y. Matsumoto, X. Li, J.   Jiang, K. Banerjee, “Can kinetic
                                                Jiang, X. Xie, K. Kawamoto, et al.,   inductance in low-dimensional
        References                              “On-chip intercalated-graphene     materials enable a new generation
          1.  K. Banerjee, A. Mehrotra, “Global   inductors for next-generation radio   of RF electronics?,” IEEE Inter.
             (interconnect) warming,” IEEE      frequency electronics,” Nature     Electron Devices Meeting, pp.
             Circuits and Devices Magazine,     Electronics, vol. 1, no. 1, pp. 46,   24.4.1-24.4.4, San Francisco, 2018.
             vol. 17, no. 5, pp. 16-32, 2001.   2018.                           18.  W. Liu, J. Kang, K. Banerjee,
          2.  C.-K. Hu, J. Kelly, H. Huang,   10.  K. Agashiwala, J. Jiang, K. Parto.   “ C h a r a c t e r i z a t io n of Fe Cl 3
             K. Motoyama, H. Shobha, Y.         D. Zhang, C. H. Yeh, K. Banerjee,   intercalation doped CVD few-layer
             Ostrovski, et al., “Future on-chip   “ D e m o n s t r a t io n  of  C MO S -  graphene,” IEEE Electron Device
             interconnect metallization and     compatible multi-level graphene    Letters, vol. 37, no. 9, pp. 1246-
             electromigration,” IEEE Inter.     interconnects with metal vias,”    1249, 2016.
             Reliability Physics Symp., pp.     IEEE Trans. on Electron Devices,   19.  J. Jiang, K. Parto, W. Cao, K.
             4F.1.1-4F.1.4, 2018.               vol. 68, no. 4, pp. 2083-2091, 2021.   Banerjee, “Ultimate monolithic-
          3.  C. K. Hu, E. G. Liniger, L. M.   11.  S. Thomas, “CMOS-compatible    3D integration with 2D materials:
             Gignac, G. Bonilla, D. Edelstein,   graphene,” Nature Electronics, vol.   R a t i o n a l e , p r o s p e c t s , a n d
             “Materials and scaling effects on   1, no. 12, pp. 612, 2018.         challenges,” IEEE Jour. of Electron
             on-chip interconnect reliability,”   12.  K .  B a n e r j e e , A .  M e h r o t r a ,   Devices Soc., vol. 7, pp. 878-887,
             MRS Online Proc. Lib., vol. 1559,   “A  powe r- o p t i ma l  r e pea t e r   2019.
             2013.                              insertion methodology for global   20.  D. Zhang, C. H. Yeh, W. Cao,
          4.  K. S. Novoselov, A. K. Geim, S. V.   i nt ercon nect s i n n a nomet er   K. Baner jee, “0.5T0.5R- A n
             Morozov, D. A. Jiang, Y. Zhang, S.   designs,” IEEE Trans. on Electron   ultracompact RRAM cell uniquely
             V. Dubonos, et al.,  “Electric field   Devices, vol. 49, no. 11, pp. 2001-  e n a b l e d b y v a n d e r Wa a l s
             effect in atomically thin carbon   2007, 2002.                        heterostructures,” IEEE Trans. on
             films,” Science, vol. 306, no. 5696,   13.  C. Xu , H. Li , K . Ba ne r je e,   Electron Devices, vol. 68, no. 4,
             pp. 78-83, 2004.                   “Graphene nano-ribbon (GNR)        pp. 2033-2040, 2021.
          5.  M. Y. Han, B. Oz yilmaz, Y.       interconnects: A genuine contender
             Zhang, P. Kim,  “Energy  band-     or a delusive dream?,” IEEE Inter.
             gap engineering of graphene        Electron Devices Meeting, pp.
             nanoribbons,” Physical Review      8.5.1-8.5.4, 2008.
             Letters, vol. 98, no. 20, pp. 206805,   14.  H . Li , C. Ru s s , W. Liu , D.
             2007.                              Johnsson, H. Gossner, K. Banerjee,
          6.  C. Xu , H. Li , K . Ba ne r je e,   “On the electrostatic-discharge


                       Biographies
                         K. Agashiwala, J. Jiang, A. Kumar, C-H. Yeh, and K. Banerjee are with the Nanoelectronics Research Lab
                       (NRL) at U. of California, Santa Barbara, CA. Correspondence and queries should be addressed to the contact
                       author, K.B. (kaustav@ece.ucsb.edu)






                                                                                                             35
                                                       Chip Scale Review   November  •  December  •  2021   [ChipScaleReview.com]  35
   32   33   34   35   36   37   38   39   40   41   42